Подняться наверх
пн-пт 9:00-18:00
+7 (495) 662-99-84
sales@all-climate.ru
Распродажа компрессорно-конденсаторных блоков
  • Библиотека
  • Статьи
  • Солнечная энергия и её использование в РФ
  • 27 Октябрь 2012, 23:14

    Солнечная энергия и её использование в РФ

    Продолжая тему энергоэффективности чиллеров с воздушным охлаждением, рассмотрим тему использования солнечной энергии. Эффективность работы любой энергогенерирующей системы использующей солнечную энергию напрямую зависит от того применяется ли в её составе концентратор солнечной энергии и каков он. Меняющий свою ориентацию в пространстве, отслеживающий перемещение Солнца по небосводу или неподвижный, его форма и материал из которого изготовлены отражающие поверхности и многое другое.

    Для оценки эффективности концентраторов прямого солнечного излучения в РФ (высоких широтах), для систем и сооружений с солнечным соляным прудом в качестве сравнительных данных, ниже будем использовать в основном данные по солнечному сиянию и прямой радиации и радиации на вертикальные поверхности в г. Омске. Хотя до последнего времени этот регион, как и вся средняя полоса России не рассматривались, как место потенциального использования солнечной энергии для энергоснабжения хозяйственной и производственной деятельности человека, и исследований в этом направлении практически не проводилось.

    Для средней полосы России характерным является то, что Солнце как бы движется вокруг объекта, набирая значительную высоту к началу облучения южных стен ранним утром (в летний период) и остается на ней (высоте) к окончанию их облучения (вечером). Причем, например, для Омска время облучения южных стен в июне-июле — менее 10 часов (таблица 1), в то время как продолжительность дня в период летнего солнцестояния превышает 17 часов.

    Таблица 1 – Время (часы, минуты) начала и конца облучения прямой солнечной радиацией южных стен на 15-е число каждого месяца и время восхода и захода Солнца для Омска [1].

    Восход, начало

    Заход, конец

    Восход

    Начало

    Конец

    Заход

    Январь

    Апрель

    8  08

    15  52

    4  58

    6  27

    17  33

    19 02

    Февраль

    Май

    7  08

    16  52

    3  58

    6  54

    17  06

    20 02

    Март

    Июнь

    6  08

    17  52

    3  20

    7  12

    16  48

    20  20

    Продолжение таблицы 1

    Восход

    Начало

    Конец

    Заход

    Восход, начало

    Заход, конец

    Июль

    Октябрь

    3  34

    7  03

    16  57

    20  26

    6  42

    17  18

    Август

    Ноябрь

    4  27

    6  39

    17  21

    19  33

    7  47

    16  13

    Сентябрь

    Декабрь

    5  36

    6  09

    17  51

    18  24

    8  23

    15  37

    Примечания:

    1. Время указано истинно солнечное.
    2. В зимний период года начало, и конец облучения солнечной радиацией южных стен совпадает с восходом и заходом Солнца.
    3. В летний период года время начала облучения солнечной радиацией южных стен совпадает с концом облучения северных стен и наоборот.
    4. Время начала облучения восточных стен совпадает с восходом Солнца, конец облучения в 12 ч. Время конца облучения западных стен совпадает с заходом Солнца.

    Изменение продолжительности дня в течение года, и соответственно возможная продолжительность солнечного сияния в Омске в графическом виде представлена на рисунке 2. А на рисунке 2 приведены строго повторяющиеся данные по суточному ходу Солнца и склонение Солнца (δ).

    Продолжительность (ч) дня и ночи в городе Омске Суточный ход высоты Солнца и график закрытости горизонта в Омске

    Рисунок 1 – Продолжительность (ч) дня и ночи в городе Омске.

    1 – δ = 23⁰ (10 июня и 3 июля), 2 – δ = 12⁰ (22 апреля и 22 августа), 3 – δ = 0 (21 марта и 23 сентября), 4 – δ = – 12⁰ (25 октября и 17 февраля), 5 – δ = – 23⁰ (11 декабря и 1 января), 6 – график закрытости горизонта.

    Рисунок 2 – Суточный ход высоты Солнца и график закрытости горизонта в Омске.

    Широта месторасположения Омска определяет продолжительность дня и соответственно возможную продолжительность солнечного сияния. В день зимнего солнцестояния — 22 декабря (рисунок 1) продолжительность дня в Омске 6 ч 48 мин, а 22 июня — 17 ч 08 мин.

    Средняя продолжительность солнечного сияния в Омске равна 2223 ч/год. А вот в Батуми — лишь 1890 ч, в Харькове — 1748 ч, в Париже — 1800 ч, в Страсбурге — 1650 ч/год. Несколько выше в Риме — 2363 ч, в Ницце — 2800 ч.

    В Омске в среднем всего 57 дней в году без Солнца, при 42 днях без Солнца зимой.

    Инвентаризация гелиопотенциала Амурской области:

    Гелиоэнергетические ресурсы области в целом составляют: на юге 1300 – 1400 кВт∙ч/м2, на севере 1100 – 1200 кВт∙ч/м2. Максимальная годовая продолжительность солнечного сияния (2300 – 2500 ч) наблюдается в южных районах. Фактическая продолжительность солнечного сияния по отношению к астрономически возможной за год составляет на севере области 45 %, а на юге 60 %, что сопоставимо с аналогичными параметрами для наиболее солнечной страны СНГ — Туркмении.

    Если сопоставить, данные таблицы 1 с кривой 1 рисунка 2 то следует, что летом к началу облучения южной стены высота Солнца будет около 30⁰.

    Следовательно, в это время, солнечные лучи, обладающие значительной плотностью энергии, будут только скользить по южной ограждающей конструкции здания, не обеспечивая надлежащую концентрацию (отражение солнечных лучей) от южной стены.

    Из рисунка 2 следует, что особенности суточного хода Солнца в Омске таковы, что положение Солнца на небосводе во время восхода и после него (во время заката и до него) строго на востоке (на западе) наблюдается с 21 марта по 23 сентября. При этом около месяца после 21 марта и до 23 сентября оно находится для Омска, в зоне возможной закрытости горизонта.

    Характерной чертой движения Солнца по небосводу в средних широтах, в частности в Омске является то, что летом продолжительность освещения Солнцем стен восточной и западной ориентации составляет для каждой из них от продолжительности освещения стены южной ориентации (таблица 2).

    Таблица 2 – Месячная продолжительность (ч) солнечного сияния для стен разной ориентации.

    Ориентация

    І

    ІІ

    ІІІ

    ІV

    V

    VІІ

    VІІІ

    ІΧ

    Χ

    ΧІ

    ΧІІ

    Север

    Восток

    Юг

    Запад

    36

    82

    46

    56

    122

    67

    92

    192

    100

    12

    122

    236

    126

    77

    144

    213

    146

    104

    161

    214

    157

    88

    156

    210

    142

    54

    125

    198

    127

    2

    95

    189

    95

    48

    98

    50

    33

    72

    38

    26

    60

    35

    Величины суточного хода прямой солнечной радиации на вертикальные поверхности ориентированные по сторонам света зависят от продолжительности солнечного сияния, скорости «подъема/опускания» Солнца и максимальной высоты Солнца (рисунки 3 и 4).

    Годовой ход прямой солнечной радиации, поступающей на стены зданий различной ориентации (С, В, Ю, З), перпендикулярную (П) и горизонтальную (Г) поверхности Годовой ход суммарной солнечной радиации, поступающей на стены зданий различной ориентации (С, В, Ю, З) и горизонтальную (Г) поверхность.

    Рисунок 3 – Годовой ход прямой солнечной радиации, поступающей на стены зданий различной ориентации (С, В, Ю, З), перпендикулярную (П) и горизонтальную (Г) поверхности.

    Рисунок 4 – Годовой ход суммарной солнечной радиации, поступающей на стены зданий различной ориентации (С, В, Ю, З) и горизонтальную (Г) поверхность.

    Из рисунков 3 и 4 следует, что количество солнечной радиации приходящей на вертикальную поверхность, ориентированную на юг в июне немного меньше количества солнечной радиации приходящей на вертикальные поверхности ориентированные на восток и на запад. В то время как ранней весной и поздней осенью на вертикальную поверхность, ориентированную на юг приходит несравненно больше солнечной радиации.

    Ещё большая «контрастность» в поступлениях солнечного излучения на поверхности, ориентированные по частям света наблюдается в более низких широтах, в частности в Ташкенте (рисунок 5).

    Прямое, рассеянное и отраженное солнечное излучения, приходящие на вертикальную поверхность в июле (город Ташкент, 41⁰ северной широты, средние данные за 10 лет)

    1 – С, 2 – С—СВ (С—СЗ), 3 – ЮВ (ЮЗ), 4 – СВ (СЗ), 5 – В—СВ (З—СЗ), 6 – В—ЮВ, 7 – В (З), 8 – Ю—ЮВ (Ю—ЮЗ), 9 – Ю, 10 – отраженная радиация, 11 – рассеянная радиация (С — север, Ю — юг, З — запад, В — восток, ЮЗ — юго-запад, ЮВ — юго-восток, СВ — северо-восток, СЗ — северо-запад).

    Рисунок 5 – Прямое, рассеянное и отраженное солнечное излучения, приходящие на вертикальную поверхность в июле (город Ташкент, 41⁰ северной широты, средние данные за 10 лет)

    Из рисунка 5 следует, что максимальная плотность прямого солнечного излучения, приходящая на вертикальную поверхность ориентированную утром на восток, а вечером на запад в июле более чем в два раза превышает плотность прямого солнечного излучения приходящего в полдень на вертикальную поверхность, ориентированную на юг.

    С уменьшением географической широты это превышение увеличивается (тропики находятся намного южнее, и плотность прямого солнечного излучения приходящая на вертикальную поверхность, ориентированную в полдень на юг будет равна нулю).

    Проведенные исследования данных по инсоляции [1] показывают, что прямое солнечное излучение (летом «продуктивное» с 8 – 9 ч до 15 – 16 ч) может являться основным, но не единственным источником поступления в солнечный соляной пруд солнечной энергии. Так для малых прудов крайне важно использовать прямое солнечное излучение, отраженное от концентраторов — для увеличения поступления солнечного излучения в пруд, за временными границами, так называемой наибольшей дневной «продуктивности» Солнца. С учетом того, что время подъема Солнца с 10 до 20⁰ на экваторе, северном тропике и, например, на широте Омска 21 июня составляет 45, 46 минут и 1 час 14 минут соответственно (в Омске утром Солнце поднимается в 1,64 раза медленнее, чем на экваторе).

    Применение концентраторов позволяет расширить также и границы месячной «продуктивности» солнечного излучения.

    Для решения этой проблемы найдено техническое решение, которое исследовано применительно к широте города Омска начиная с 23 апреля (ho= 10⁰), когда Солнце стоит строго на востоке (рисунок 6).

    Схема концентрации солнечного излучения в солнечный соляной пруд летним утром за счет изменения наклона концентратора солнечной энергии

    1 – солнечный луч; 1', 1" – направления движения солнечного луча 1 после отражения от концентратора и после вхождения в воду; 2 – солнечный луч; 2', 2", 2Δ,2+ – направления движения солнечного луча 2 после отражения от водной поверхности пруда, концентратора и после вхождения в воду; ho – угол наклона прямых солнечных лучей (высота Солнца); α,τ – угол наклона отраженных солнечных лучей (высота «отраженного» Солнца); ђ – угол наклона концентратора солнечной энергии; ξ – угол вхождения солнечных лучей в воду.

    Рисунок 6 – Схема концентрации солнечного излучения в солнечный соляной пруд летним утром за счет изменения наклона концентратора солнечной энергии (схема направлений движений солнечных лучей, поступающих в солнечный пруд).

    Угол наклона отраженного солнечного луча 1' (, высота «отраженного» Солнца, рисунок 6) связан с высотой Солнца () и углом наклона концентратора солнечного излучения () следующей зависимостью

    α = ho +2ђ,⁰

    При высоте Солнца 10⁰ и угле наклона концентратора солнечного излучения 10⁰ высота «отраженного» Солнца будет равна 30⁰.

    Как видно из рисунка 1 наклон концентратора увеличивает «высоту» отраженного луча 1' с 10 до 30⁰, угол ξ¹ становится равным 49,5⁰ (для луча 2 ξ² равно 42,5⁰), а значит водная (оптическая) масса изменяется с 1,48 до 1,32.

    Отраженные солнечные лучи вступают в воду уже под углом, уменьшающим отражение солнечного излучения водной поверхностью и поглощение солнечного излучения на пути к слою горячего рассола. Поскольку доля от концентрации луча 2' значительна только при очень малых высотах Солнца, здесь её не рассматриваем. Наклон концентратора солнечной энергии при малых высотах Солнца позволяет главное — использовать всю высоту концентратора для увеличения поступления солнечного излучения в пруд в наиболее проблемные утренние и вечерние часы. Использование отраженного прямого солнечного излучения является мощным инструментом аккумулирования прудом солнечной теплоты. Коэффициент концентрации солнечного излучения в пруд может составить 5,0 при высоте Солнца 10⁰. При высоте Солнца 15⁰ он составляет — 3,3, и 2,6 — при 19⁰, уменьшаясь с увеличением высоты Солнца. Важнейшим фактором в пользу такой схемы концентрации солнечной энергии является то, что в сутках полдень один, а утро и вечер это два временных периода. В летний период в России продолжительность дня 16 – 17 часов, против 12 – 13 часов на экваторе и в тропиках. Концентратор будет отражать дополнительно в акваторию пруда и рассеянное солнечное излучение, которое утром и вечером имеет наибольшую интенсивность с той стороны небосвода, где в это время находится Солнце.

    Исходя из этого исследования, разработана, конструктивная схема концентратора солнечной энергии (рис.7), которая будет также актуальна утром и вечером и для низких широт (экватор, тропики)

    Конструктивная схема концентрирования солнечной энергии в солнечный соляной пруд концентратором солнечной энергии за счет слежения за движением Солнца по небосводу.

    Рисунок 7 – Конструктивная схема концентрирования солнечной энергии в солнечный соляной пруд концентратором солнечной энергии за счет слежения за движением Солнца по небосводу.

    Применение наклонного концентратора солнечного излучения (рисунок 7) с избытком компенсирует низкую инсоляцию весной и осенью в средней полосе России. Без учета того, что для малых прудов потери теплоты через дно и боковые стенки могут быть снижены надлежащей теплоизоляцией.

    Ранней весной и поздней осенью на вертикальную поверхность, ориентированную на юг в средней полосе России при малой высоте Солнца приходит больше солнечной энергии, чем на восточную и западную вертикальные поверхности. Поэтому это техническое решение по концентрации солнечного излучения и для этих временных периодов перспективно.

    Для увеличения поступления в пруд солнечного излучения в полуденные часы, когда высота Солнца в Омске наибольшая, без затенения акватории пруда ранним утром и поздним вечером, когда высоты Солнца незначительны, можно, использовать в качестве отражателя выступающие «чердачные» части здания в соответствии с рисунком 8.

    Конструктивная схема дополнительной концентрации солнечного излучения в солнечный соляной пруд в полуденное время.

    Рисунок 8 – Конструктивная схема дополнительной концентрации солнечного излучения в солнечный соляной пруд в полуденное время.

    Использование солнечных соляных прудов малых площадей с концентрацией энергии от концентратора и дополнительного «чердачного» отражателя для российских просторов является наиболее оптимальным.

    Предложенная технология концентрации и аккумулирования солнечной энергии может быть использована при эксплуатации плоских солнечных коллекторов, которые надо будет, в отличие от традиционной ориентации в пространстве, располагать горизонтально. Так, чтобы концентратор мог менять свое положение также как при его эксплуатации с солнечным соляным прудом, используя при этом «чердачные» части здания для дополнительной концентрации энергии в полуденные часы.

    Такое техническое решение (концентратор) в России может быть эффективно реализовано при использовании солнечной энергии для локальных систем водоснабжения, электроснабжения, холодотеплоснабжения, для солнечной бани и печи, для биогазовой установки и сушки материалов и сырья и т.д. 

    Вернуться в раздел статьи